If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-2n-242=0
a = 2; b = -2; c = -242;
Δ = b2-4ac
Δ = -22-4·2·(-242)
Δ = 1940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1940}=\sqrt{4*485}=\sqrt{4}*\sqrt{485}=2\sqrt{485}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{485}}{2*2}=\frac{2-2\sqrt{485}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{485}}{2*2}=\frac{2+2\sqrt{485}}{4} $
| -5v+31=-2(4-4v) | | 180=9x-25 | | 7.25(10)+5.50f=105.50 | | 3^(x^2-1)=134 | | 5=6/(2x)-3 | | 3(7-9m)-4(1+4m)=103 | | e-12.6=1.5 | | 5=6/(2x-3) | | 10x-50*4=500 | | 5=6/2x-3 | | e-12.6=15 | | 4x+-6=-14 | | 9x-25=208 | | 75=1/8x | | 2x+135-3x=120 | | 1/8x=75 | | 2(4,5x-1,5)=24 | | d2−81=0 | | 9x-25+9x-25=104 | | 76=9x-25 | | 5(12–1)+3x12=7(12+1) | | 9x-25=76 | | y/10+-8=-5 | | -5=-8=y/10 | | 3^(2x-1)*9^x=1 | | 28=x3-5 | | Y^2-35=-2y | | 50x+200=550 | | 7x2-12x-4=0 | | 1/3y+5=9 | | 9x2+3x-12=0 | | |7-7x|-10=39 |